UNIVERSITY OF MUMBAI

Syllabus for the M.Sc. Part - II
[Sem III and IV]

Program: M.Sc.

Course: Life Sciences

Specialisation:

Biological Macromolecules

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2017-2018

SEMESTER III

	<u> </u>				
Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week	
PSLSCBMT301	ı	Biomathematics			
(Biomathemati	II	Research Methodology			
cs, Research Methodology and Cell	III	Cell and Molecular Biology Techniques	4		
Biology Techniques)	IV	Animal and Plant Tissue Culture			
PSLSCBMT302	I	Bioenergetics and Carbohydrate Metabolism			
(Bioenergetics	II	Lipid Metabolism	4		
and Carbohydrate	III	Amino Acid Metabolism			
Metabolism)	IV	Metabolic Engineering and Systems Biology			
			1	1	
	I	Chemical Bonds and Spectroscopic Techniques	4		
PSLSCBMT303 (Biomolecular	II	Protein and Nucleic Acid Structure			
Structure)	III	Supramolecular Assemblies and DNA-protein Interactions			
	IV	Complex Proteins			
PSLSCBMP301		ematics, Research Methodology and gy Techniques	2		
PSLSCBMP302	Bioenerg	etics and Carbohydrate Metabolism	2		
PSLSCBMP303	Biomolec	ular Structure	2		

SEMESTER IV

PSLSCBMT401	I	Cell Division and Apoptosis		
	II	Biomembrane and Cell Matrix	4	
(Molecular Cell Biology)	Ш	Protein Trafficking and Targeting] 4	
Diology)	IV	RNAi and Epigenetics		
		•		
	I	Nucleotide Metabolism		
PSLSCBMT402	II	Nitrogen Assimilation in Plants		
(Nitrogen Metabolism and Plant	III	Photosynthesis and Secondary Metabolism	4	
Biochemistry)	IV	Free radicals and Antioxidant Biology		
	-			-
	I	Protein folding and Engineering		
PSLSCBMT403	П	Kinetics and Mechanism in Biological Systems		
(Biomolecular Function)	III	Metabolomics and Transcriptomics	4	
	IV	Nanobiology		
PSLSCBMP401	Molecula	r Cell Biology	2	
PSLSCBMP402	Nitrogen Metabolism and Plant Biochemistry		2	
PSLSCBMP403	Biomolecular Function		2	

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2017-2018

Semester III Detailed Syllabus

Course Code	Title	Credits
PSLSCBMT301	Biomathematics, Research Methodology and Cell Biology Techniques (60L)	4
and derivativ Differentiation substitution, s integration to	` '	
Meaning of Types of re Quantitative, Research; Re Research and process; Crite Plan for dat processing an	Research, Objectives of research, Motivation in research; search — Descriptive, Analytical, Applied, Fundamental, Qualitative, Conceptual, Empirical and Other Types of search Approaches; Research Methods vs. Methodology; I Scientific Method; Research Process: Steps of research ria of Good Research; Sampling, Sample size determination, a collection, Methods of data collection, Plan for data d analysis; Ethical considerations during research.	
Cell Biology To of flow cytome Plasmon resore Proteomics: Proteomics: Proteomics: Proteomics: Spectrometry; scattering (Spectrometry: Scattering (Spectromics: Control of the proteomics: Control of the proteomics: Sequencing; management of the proteomics of the proteomic of the proteomics of the prot	d Molecular Biology Techniques echniques: Principles, Instrument overview, and Applications etry, Fluorescence Resonance Energy Transfer (FRET); Surface nance. eptide synthesis and Protein sequencing methods, detection ation modification of proteins; 2-D gel electrophoresis; Mass X-ray diffraction methods; Static and dynamic light LS and DLS); Capillary electrophoresis; Protein chips; anning calorimetry Digonucleotide synthesis; DNA chips/microarrays; DNA DNA sequencing methods, strategies for genome nethods for analysis of gene expression at RNA and protein nicroarrays; Site directed mutagenesis; Gene knockdown; splay; Serial analysis of gene expression (SAGE)	

Unit IV: Animal and Plant Tissue Culture

(15L)

Plant tissue culture: Basic concepts in cell culture - cell culture, Cellular Totipotency, Somatic Embryogenesis

In vitro culture: approaches & methodologies - preparation steps for tissue culture, surface sterilization of plant tissue material, basic procedure for aseptic tissue transfer, incubation of culture.

Tissue culture methodologies: introduction - Callus Culture, Cell Suspension Culture, Protoplast culture and hybridization, Organogenesis, plant micro propagation, cryopreservation.

Animal tissue and cell culture:

In vitro culture: approaches & methodologies - preparation steps for tissue culture, basic procedure for aseptic tissue transfer, incubation of culture.

Tissue culture methodologies: introduction - Source of tissue, primary culture, differentiation of cells, growth kinetics, animal cell lines and their origin and characterization

Cloning & Selection of specific cell types – cloning, somatic cell fusion and HAT selection, Medium suspension fusion, selection of Hybrid clone, production of monoclonal antibodies, stem cell culture

Organ Culture - Culture of embryonic organs, whole embryo culture, culture of adult organs

PSLSCBMP301	Bionanalytical Techniques and Cell Dynamics (60L)	2	04
	 pka values of Ala or Gly by Titration Curve 		
	Determination of melting temperature (Tm) of		
	DNA		
	3. Spectroflourimetric analysis of proteins		
	Preparation of lipid bilayer vesicles (liposomes) using the purified lipids		
	5. Effect of detergents on membranes		
	6. Fractionation of cell organelles from		
	animal/plant tissues and identification by marker enzymes		
	7. Estimation of inorganic phosphorus by Fiske and		
	SubbaRao method		
	8. Protease protection assay to study protein		
	transport and secretion		

Course Code	Title		Credits
PSLSCBMT302	Bioenergetics and Metabolism	(60L)	4
Bioenergetics: Color of ΔG for a reastandard free energy change reactions; Redox potentials & free introduction, pho	cics and Carbohydrate Metabolism Incept of free energy, standard free energy, dection; Relationship between equilibrium of ergy change, biological standard state & so in coupled reactions; Biological oxidation potentials; Relation between standard energy change; High energy phosphate of sphate group transfer, free energy of hydroates alongwith reasons for high AG	constant and standard free ion-reduction reduction compounds —	
microorganisms; Gluconeogenesis, aminobutyrate sh Doudoroff pathw	Metabolism: Glycolysis in higher organisms Pentose phosphate pathway and its glycogenesis and glycogenolysis, glyoxylate nunt pathways; Cori cycle; Anaplerotic react ay; Glucuronate pathway; Metabolism of carbohydrate metabolism; Inbortabolism	regulation; and Gamma ions; Entner- disaccharides;	
fatty acids; Oxida Role of carnitine	abolism lism: Hydrolysis of tri-acylglycerols; α-, β-, ω ntion of odd numbered fatty acids — fate of ntion of complex lipids; Formatic ntics of beta oxidation	f propionate;	
structure and fur acylglycerols, ph Metabolism of ch steroid hormone	thesis: Acetyl CoA carboxylase; Fatty acid sonction; Lipid biosynthesis; Biosynthetic pathosphoglycerides, sphingomyelin and prolesterol and its regulation; Biosynthesis of bis; Alternative pathway for isoprenoid bis errors of fatty acid metabolism	hway for tri- costaglandins; oile acids and	
metabolism - Tra deamination of a	bolism: Proteolysis; General reactions of nsamination, decarboxylation, oxidative & rmino acids; Acetyl CoA, alpha ketogutarate umarate and oxaloaccetate pathway; Urea	non-oxidative e, acetoacetyl	
Histidine; One car serine, cysteine,	Amino Acids: Biosynthesis of aromatic amin rbon atom transfer by folic acid (Biosynthes methionine, threonine.); Conversion of am cts; Inborn errors of protein metabolism	sis of glycine,	
· ·	I role of TCA cycle in energy generation and ond; Integration/regulation of carbohydra	•	

Unit: IV Metabolic Engineering and Systems Biology

Metabolic Engineering: Historical perspective and introduction; Importance of metabolic engineering; Paradigm shift; Information resources; Scope and future of metabolic engineering; Plant and microbial metabolic engineering; Metabolically engineered organisms; Metabolic flux analysis

(15L)

Systems Biology: Concepts and working principles of System Biology - Practical applications of System Biology in Life Sciences - Introduction to System Biology platforms Proprietary system Biology platform; Different Markup languages used in systems biology. Introduction to NGS technology.

PSLSCBMP102	Bioenergetics and Metabolism (60L)	2	04
			J-1
	1. Determination of pyruvate by 2,4-dinitrophenyl		
	hydrazine method		
	2. Isolation of cholesterol and lecithin from egg		
	yolk		
	3. Measurement of free radicals by		
	spectrophotometric method		
	4. Analysis of free radical scavengers and		
	antioxidant enzymes (Assay of any one -		
	peroxidase, catalase, phenol oxidase, ascorbic acid oxidase)		
	5.Determination of N- and C-terminal amino acids (demonstration)		
	6. Effect of metal ions on the activity of		
	enzymes/proteins		
	7. Protein purification methods:		
	A. Isolation of casein from milk		
	B. Purification of an enzyme by ion exchange		
	chromatography/affinity chromatography		
	C. Use of ammonium sulphate precipitation and		
	dialysis		
	D. Use of gel filtration		
	E. SDS-PAGE		
	8. Polyacrylamide gel electrophoresis under non		
	denaturing conditions		
	A. Silver staining		
	B. Activity staining of enzymes		
	C. Determination of effect of acrylamide		
	concentration on the mobility of proteins		
	concentration on the mobility of proteins		

Course Code	Title		Credits
PSLSCBMT103	Biomolecular Structure	(60L)	4
Inter atomic intera weak, non-covaler Waals forces and interactions and th Spectroscopic ted Fluorescence, Infra Use of lasers for sp	Importance of chirality in biomolecules; Princ	s van der of these nolecules. ations of py; NMR;	
	d Nucleic Acid Structures ability of Proteins: Myoglobin, Hemoglobin, L	(15L) ysozyme,	
proteins by Ramac Covalent modifi	Ribonuclease A, Carboxypeptidase and Chymotrypsin; Conformation of proteins by Ramachandran plot; N and C terminal analysis of proteins Covalent modification of proteins: Phosphorylation, adenylation, methylation, ribosylation		
	DNA structure: A/B/Z/D forms of double helical structure of DNA; Triple helix; DNA supercoiling and topoisomerases		
Viruses: Viral asset Prokaryotes and processing of rRNA Nucleic Acid Bindi	ecular Assemblies and Complex proteins mbly; Capsid; Capsomere, eg., TMV, HIV, Adenox Eukaryotes: Ribosomal assembly; Biosynth A; Macromolecular interactions in regulating tra ng Motifs in Proteins: Leucine zipper; Zinc finge parrel; OB fold and their role in regulation	esis and anslation. ers; Helix-	
expression			
Unit IV: Complex Metalloproteins: Cheme proteins.	Proteins General principles of metal coordination; Heme-	(15L) and non-	
l	ns: Oxygen transport proteins from vertebrooglobin, hemocyanin, cytochrome C)	rate and	
sugar transport,	nponent signalling systems and their role in r catabolite repression, phosphotransferase chanisms and sensory modulation of C-N metabo	system,	

Ρ	ra	cti	ca	ls
Р	ra	CU	ca	ıs

PSLSCBMP103			2	04
	Biomolecular Structure	(60L)		

Semester IV Detail Syllabus

Course Code	Title		Credits
PSLSCBMT201	Molecular Cell Biology	(60L)	4
control of cell of Apoptosis: Factors apoptosis; Receptors Role of a Carcinogenesis: Cocarcinogenesis; mo	ell cycle: Meiosis: its regulation, steps in cell cycle. Cell-cell fusion in normal and abnormal inducing apoptosis; Genes and proteins involves with death domains and their signalling pa	al cells. olved in othways; disease. omoting ss - AFP,	
Biomembranes: proteins, their so reconstitution; Lip Nuclear pore constitution; Role in import—export cycles of the intermediary filan tubulin, examples function, eg., dyn proteins on microse.	matrix: Proteins of the microfilament, microtubunents; Structure, properties and assembly of action and roles of these filaments in cell structuamics and roles of kinesin and dynein; Organizatillus.	embrane nedicine by; RNA nuclear ules and ctin and ure and	
Unit III: Protein Tr N-glycosylation in proteosomal degra Intracellular and r pathways in prok sequences; Co-tr Targeting of mitoo Vesicle biogenesis	afficking and Targeting the ER and Golgi (quality control, UPR, ER, dation membrane protein trafficking and targeting; Security and eukaryotes; Endocytic pathways	ecretory; Signal assay); proteins; astion of APs and	
mechanism in euk	pigenetics Historical background; RNA interference as regaryotes; Slicer and dicer; Synthesis and functions; Gene silencing mechanisms; RNAi-based gene t	of RNAi	

Chromatin remodelling in human disease and diagnosis

Epigenetics: Background, chromosomal inheritance taking fission yeast as an example; DNA methyltransferases, DNA methylation maintenance; Histone modification and regulation of chromatin structure; Bivalent histones; Histone demethylation; Epigenetic therapy; Epigenetic regulation of gene expression

PSLSCP201	Molecular Cell Biology (60L)	2	04
	Nucleic acid isolation and blotting		
	A. Isolation of RNA from <i>E. Coli</i> B. Spectrophotometric characterization of RNA C. Capillary blotting (Southern/Northern) of nucleic acids from agarose gels D. Preparation of cDNA and RT-PCR		
	2. Isolation of DNA and demonstration of apoptosis of DNA laddering		
	3. MTT assay for cell viability and growth		
	4. UV damage and repair mechanism in <i>Escherichia coli</i> or <i>Serratia marcescens</i>		
	5. Determination of Molar absorption coefficient of tyrosine		
	6. Measurement of DNA by DPA method		
	7. Assay of alanine and aspartate aminotransferases		
	8. Measurement of activity of plant nitrate assimilation enzymes		
	A. Isolation of nitrate reductase from plants B. Effect of environmental factors and hormones (CO ₂ , light, pH, growth hormones)		
	9. Plant pigments		
	A. Extraction of plant pigments from spinach B. Separation by column chromatography C. Determination of absorption spectra of plant pigments		

Course Code	Title	Credits
-------------	-------	---------

PSLSCBMT202	Nitrogen Metabolism and Plant Biochemistry	(60L)	4
degradation of nu pyrimidine nucleo foluc acid in nuc ribonucleotide ri polynucleotides; I	e Metabolism polism: Role of nucleases and phosphodiesterase polism: Role of nucleases and degradation of puralides and their regulation; Thymine biosynthesis pleotide biosynthesis; Purine salvage pathway; eductase; Biosynthesis of deoxyribonucleotic phibitors of nucleic acid biosynthesis; Inherited cabolism; Anticancer drugs.	ines and ; Role of Role of des and	
Nitrogen Fixation mechanism of ac regulation; Hydrog	Assimilation in Plants : Nitrogenase complex; Electron transport chetion of nitrogenase; Structure of 'NIF' genes gen uptake and bacterial hydrogenases on in plants: Structural features of nitrate reductions.	and its	
regulation of nit	incorporation of ammonia into organic comrate assimilation; Ammonium assimilating ena ase, glutamate synthase and GDH	-	
Photosynthesis: Li transport and ATF	hesis and Secondary Metabolism Ight harvesting complexes; plant mitochondrial electory synthesis; alternate oxidase; Carbon fixation by ays; Photoprotective mechanisms; Photores	y C ₃ , C ₄	
biosynthesis), lign	of secondary plant metabolism, terpenes (class nin, tannins, pigments, phytochrome, waxes, a cotine; Functions of alkaloids;	•	
Free radicals: Interpretation of the Species (ROS/RNS Disease states an Signal Transduction Metabolism. Oxid	als and Antioxidant Biology troduction & Chemistry of Reactive Oxygen/ i); Sources of ROS/RNS; Cellular damage by R d free radicals; Transition metals as catalyst; I on; Oxidative stress; Beneficial Aspects of C ative damage markers Methods of Detecting R radicals in biological systems; EPR spectroscopy p	OS/RNS; ROS and Oxidative OS/RNS;	
components of a superoxide dismu	et-Derived Antioxidants; Enzymatic and non-entioxidative defense mechanism (catalase, pertases, vitamins E and C, uric acid, glutathioneral scavengers; Antioxidant therapy	roxidase,	

PSLSCBMP202	PRACTICAL VII: Nitrogen Metabolism and Plant Biochemistry (60L)	2	04
	1. Analysis of DNA		
	A. Estimation of DNA and RNA by UV absorption method B. Determination of purity of nucleic acids C. Conformational analysis of plasmid DNA by agarose gel electrophoresis		
	2. Enzyme inhibition		
	A. Inhibition of enzyme activity B. Determination of Ki values		
	3. Immobilization studies:		
	A. Preparation of urease entrapped in alginate beads and determination of percent entrapment B. Study of the kinetics of the rate of urea hydrolysis by urease entrapped alginate beads C. Study of reusability and storage stability of urease entrapped alginate beads D. Immobilization of urease by covalent attachment to solid support		
	4. 2-D Gel electrophoresis (Demonstration)		
	5. Study of nanoparticles		
	A. Synthesis of Silver nanoparticlesB. Spectroscopic characterisation		

Course Code	Title		Credits
PSLSCBMT203	Biomolecular Function	(60L)	4
Unit I: Protein fold	Unit I: Protein folding and Engineering (15L)		
Compact Interm mechanisms; Mol	Protein Folding: Folding pathways; Intermediates of protein folding; Compact Intermediates; Hierarchical and non-heirarchical folding mechanisms; Molten globule structure; Role of chaperons, heat shock proteins and enzymes in protein folding		
enzymes; Conforn	Protein Engineering Design and construction of novel proteins and enzymes; Conformation of proteins in general and enzymes in particular; Effect of amino acids on structure of proteins; Energy status of a protein		

molecule, Structure- function relations of enzymes	
Basic concepts for design of a new protein/enzyme molecule; Specific	
examples of enzyme engineering – Dihydrofolatereductase	
Unit II: Kinetics and Mechanism in Biological Systems (15L)	
Enzyme Kinetics: Enzyme catalysis and factors contributing to high catalytic rates; Molecular aspects of catalysis for specific enzyme substrate complexes (Lysozyme, carbonic anhydrase, carboxypeptidase and chymotrypsin); Multisite binding of ligands to proteins; Bohr's effect; Models of Allostery - MWC and KNF models Hill's equation coefficient Immobilised enzymes: Methods and applications	
Unit III. Motabolomics and Transcriptomics (151)	
Unit III: Metabolomics and Transcriptomics (15L)	
Metabolomics: Modern Concept of metabolomics; Detection and	
characterization of metabolites; metabolite library; Metabolite isolation	
and analysis by Mass Spectrometry, NMR, LIF, LC-UV; Metabolomics databases and resource (e.g. MetaboLights)	
Plant metabolomics: Plant stress responses, nutrigenomics, and metabolite	
dynamics; Metabolite profiling in phenotyping and breeding (<i>Arabidopsis</i> ecotypes, rice)	
Transcriptomics: basic concepts and technology, data normalization,	
clustering (Hierarchical, k-means, SOM), detection of over expression and	
under expression (PCA). Modeling using Boolean Networks. EST, Unigene.	
Unit IV: Nanobiology (15L)	
Introduction: Nanoscience; Nanobiotechnology; Nanodevices; Applications	
in various fields viz. Physical and Chemical, Materials and Life Sciences	
Application: Gold bonding proteins; Nanopharmaceuticals such as	
liposomal formulations; Membrane nanodiscs; Biosensors; Nanowires	
Synthesis of nanostructure: Physical, chemical and biological methods Properties and Characterization of nanomaterials: Optical (UV-Vis / Fluorescence), X-ray diffraction; Imaging and size (Electron microscopy, Light scattering , Zeta potential),; Surface and composition (ECSA, EDAX, AFM/STM),	

PSLSCBMP203		2	04
	Biomolecular Function (60L)		
	1.		