UNIVERSITY OF MUMBAI

Syllabus for the M.Sc. Part - II [Sem III and IV]

Program: M.Sc.

Course: Life Sciences Specialisation: Environmental biotechnology

(Credit Based Semester and Grading System with effect from the academic year 2017-2018)

M.Sc. Part – II Life Sciences Syllabus

Restructured for Credit Based and Grading System

To be implemented from the Academic year 2017-2018

SEMESTER III

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
	Ι	Biomathematics		
PSLSCEBTT301	II	Foundations of environment		
(Biomathematics and	III	Natural resources	4	
Environmental science)	IV	Approach in environmental		
		science		

PSLSCEBTT302 (Pollution)	Ι	Air pollution		
	II	Water pollution	4	
	III	Land and noise pollution		
	IV	Radiation, thermal pollution and Electronic waste(E-waste)		

	Ι	Environmental microbiology		
PSLSCEBTT303 (Environmental microbiology, toxicology and laws)	II	Bioremediation and biodegradation	4	
	III	Environmental toxicology		
iaws)	IV	Environmental issues and laws		

PSLSCEBTT304 (Research	Ι	Research Methodology	A	
	II	Scientific Writing		
Methodology and Quality	III	ISO	•	
Control)	IV	GMP / GLP		
PSLSCEBTP301	Biomat and en	thematics, Research Methodology vironmental science	2	

PSLSCEBTP302	Pollution	2	
PSLSCEBTP303	Environmental microbiology, toxicology and laws	2	
PSLSCEBTP304	Dissertation on Literature Review	2	

SEMESTER IV

	Ι	Fermentation technologyI		
PSLSCEBTT401 (Applied	II	Fermentation technology II	4	
environmental biotechnology)	III	Environmental monitoring	•	
biotechnology)	IV	Agricultural biotechnology		

	Ι	Industrial and municipal waste		
PSLSCEBTT402	II	Liquid waste management		
(Waste management)	III	Solid waste management	4	
	IV	Biological degradation of hazardous waste		

	Ι	Sustainable technology		
PSLSCEBTT403 (Industrial environmental biotechnology)	II	Biofuels		
	III	Natural resource recovery	4	
	IV	Biotechnology of marine environment		

PSLSCEBTT404	Ι	Microbial Cell Factories and their modification		
(Genetic Engineering and Food	II	Applications of Genetic Engineering	4	
	III	Food Constituents and Nutrition		
Technology)	IV	Food Technology		

PSLSCEBTP401	Applied environmental biotechnology	2	
PSLSCEBTP402	Waste management	2	
PSLSCEBTP403	Industrial environmental biotechnology	2	
PSLSCEBTP404	Dissertation of Research Project	2	

M.Sc. Part – II Life Sciences Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2017-2018 Semester III Detailed Syllabus

Course Code	Title	Credits
PSLSCEBTT301	TT301Biomathematics and environmental science (60L)	
 Unit I : Biomathematics Matrices, Rank of Mat Limit and derivatives, 	rices by Diagonalisation method Differentiation (including differentiability),	
 Successive Differentiation and their application in biological research. Integration – Definite and Indefinite; Application of integration to find area and application in biological research. Differential equationshomogeneous and Linear ODE's and its simple applications to biological problems. 		
 Unit II : Foundations of Environment: Definit Man Environment revolution and its impart Geographical classifition of biomes, tropical radius 	rironment (15L) ion, principle and scope of environmental science. relationship and impact of technology : Agriculture act on the environment. cation: Different biomes in different region, distribution ain forests, temperate forests, coniferous forests, arctic	

tundra, grasslands and deserts .Island biogeography: Zones of India. Biosphere reserves.

- Aquatic ecosystems –coastal zones, coral reefs and their importance, mangroves, coastal wetlands
- Geological Hazards Catastrophic geological hazards. Study of floods, landslides, earthquakes, volcanism and avalanche. Prediction and perception of the hazards and adjustments to hazardous activities.

Unit III : Natural resources

(15L)

- **Natural resources**: renewable and non-renewable natural resources, destruction and conservation of resources; Mineral resources
- Water resources: Availability of water resources, water needs, annual supply of water, water-shortage (reasons and its impact), Water scarcity and its management. Water use irrigation, domestic, industrial, and miscellaneous; Methods of water conservation
- Forest resources: classification of forests, forest resources, destruction of forests natural and manmade, International initiatives in forest conservation, State of forests in India, Local communities and forest conservation in India;
- Energy resources: Source of our energy, Pattern of global energy use, nonrenewable fossil fuels (coal reserves, natural gas, nuclear power), Concerns regarding depletion of oil resources, renewable sources (solar, wind, hydropower, biofuel, fuel cells), Conserving and using energy efficiently.

Unit IV : Approach in environmental science(15L)

- Role of environmental biotechnology; Scope for use, Market for environmental biotechnology, modalities and local influences,
- Integrated approach in environmental biotechnology
- Immobilisation, Degradation or monitoring of pollutants from a biological origin.
- Metabolic Pathways of Particular Relevance to Environmental Biotechnology

4	04

Course Code	Title	Credit
PSLSCEBTT302	Pollution (60L)	4
	51 \	
Unit I : Air pollution (I	5L)	
• Natural and anthropogenic sources of pollution,		
• Primary and secondary pollutants transport and diffusion of pollutants,		
Effect of air poll	ution, control measures for air pollution;	
• Methods of more	nitoring and control of air pollution - SOx, NOx, CO,	

SPM, PAN; Level of air pollution in India.

 Ambient air quality in India; The Air (Prevention and Control of Pollution) Act, 1981; Acid rains

Unit II : Water pollution (15L)

- **Types and sources of water pollution:** marine, fresh and ground water; consequences of water pollution;
- Analysis of water quality, Water quality and standards,
- Marine pollution: Oil pollution and marine ecology, sources of oil pollution, factors affecting fate of oil after spillage movement, spreading, evaporation, emulsification, dispersion, Remote sensing in water quality monitoring.
- Coastal pollution, international initiatives to control marine pollution Eutrophication and monitoring eutrophication; algal blooms .
- The Water (Prevention and Control of Pollution) Act, 1974

Unit III : Land and Noise pollution (15L)

- Soil pollution: Sources of pollution water logging, soil salinity, desertification, mining, pollution by plastic, dumping of hazardous and toxic waste.
- Recycling solid waste and restoring soil condition
- Industrial waste effluents and heavy metal; managing of urban waste in India; Chemical and bacteriological analysis of soil sample, soil sampling methods and procedures
- Noise pollution: Basic properties of sound waves; loudness and intensity levels, decibel; Sources of Noise Pollution–Measurement and analysis of sound, Measures to control noise pollution

Unit IV : Radiation, Thermal pollution and Electronic waste (E-waste) (15L)

• Radiation pollution: Radioactive decay; Interaction of radiation with m

Biological impact and health hazards associated with radiation; radioactive waste disposal.

- **Thermal pollution:** Definition and sources, Chemical and biological effects of thermal pollution; Effect on marine life, bacteria and water quality and other aquatic biota; Methods for minimization and control of thermal pollution.
- Electronic waste (E-waste): Sources and types and constituents of E-wastes and its environmental consequences.

PSLSCEBTP302	Pollution	2	04
	1. Determination of mechanical composition of soil.		
	2. To study the soil profiles for their height, color, texture		
	and electrical conductivity.		
	3. Determination of Nitrate, phosphate and sulphate from		
	soil / water		
	4.Isolation of Microorganisms form polluted		
	environment/Soil /Water resources /Air		
	5. Case study – Supersonic jets / Concorde		
	6. Case study – Bhopal Gas tragedy		
	7. Case study – APHA, AWWA		
	8. Case study- Acid Rain		

Course Code	Title	Credit
PSLSCEBTT303	Environmental microbiology, toxicology and laws (60L)	4
Unit I: Environmental	microbiology	
• Microbiome: Mic	croorganisms in nature and their importance, sampling,	
culture and cultiv	ation of microorganisms; Microorganisms involved and	
used in service of	nature and humans;	
• Microbiology of w	vater, air and soil.	
• Microbes and Env	vironment Role of microorganisms in natural system and	
artificial system;	Influence of Microbes on the Earth's Environment and	
Inhabitants; Ecolo	gical impacts of microbes; Symbiosis (Nitrogen fixation	
and ruminant sy	mbiosis); Microbes and Nutrient cycles; Microbial	
communication sy	stem; Quorum sensing; Microbial fuel cells; Prebiotics	
and Probiotics.		
• Microbial dive	rsity: Molecular methods of identification of	
microorganisms – DGGE, TGGE, ARDA, T-RFLP, 16S rDNA sequencing		
, Database project, Metagenomics and RNA sequencing		
Unit II: Bioremediation and biodegradation(15)		
• Bioremediation,	insitu and exsitu bioremediation techniques,	
Bioaugmentation a	and biostimulation. Evaluating Bioremediation.	
• Phytoremediation,	Metals bioremediation,	
Gaseous bioremed	liation.	
• Methods in dete	rmining biodegradability, Contaminants available for	
biodegradation.		
Microbial degrada	tion of biopolymers:Cellulose,xylan.starch,pectins,lignin	
and chitinand polyhydxoxy alkanoates.		
Unit III : Environmental toxicology (15L)		
• Toxic chemicals	in the environment (air and water) - their effects and	
biochemical inter	actions;	

• Biochemical aspects of arsenic, cadmium, lead, mercury, carbon	
monoxide, ozone and PAN pesticide; Mode of entry of toxic substance, its	
breakdown and detoxification; biotransformation of xenobiotics;	
Insecticides / Pesticides in environment, MIC effects	
• Carcinogens in environment, chemical carcinogenicity, mechanism of	
carcinogenicity, environmental carcinogenicity testing.	
• Epidemiological issues of toxic compounds and metal poisoning	
Unit IV : Environmental issues and environmental laws (15L)	
• Ozone layer depletion (Montreal protocol), El Nino, Acid rain - causes	
and effects, Green House Effect global climate change – GHG and green	
house effect, global warming – effect on oceans, coastline and marine	
ecosystem, impact of global warming on India. Response to global	
warming – Kyoto protocol and its outcome	
• International Environmental Policies: Nature of Environmental Policies;	
Stockholm Conference(1972); Rio Conference (UNCED)(1992); Merits of	
the Conference (Agenda 21); Failures of the Conference.	
• National Environmental Policy: National Policy on EIA and Regulatory	
Framework.	
• International Agreements and Treaties: Concept of agreement and treaty;	
Need of international agreements and treaties; Johanesburg treaty; GAAT	
and Environment; CTES.	
• The Biodiversity Rules, 2004; The Biological diversity act 2002;	
The Wildlife Preservation Act, 1982; The Wildlife (Protection) Act, 1972;	
Forest (Conservation) Act, 1980.	

PSLSCEBTP203	Environmental microbiology, toxicology and laws(60L	2	04
	1 Characterisation of Microorganisms :		
	a. Cultural Characteristics		
	b. Staining		
	2 Biochemical Tests		
	3 Effects of Environment on Microorganisms :		
	Oligodynamic effect		
	4 Determination of thermal death point and thermal		
	death time of microorganisms.		
	5. Toxicity Testing: The Effect of Chemicals on		
	Seeds 6. Case Study : El Nino		
	7. Case Study : Mercury pollution		
	8. Case Study: EIA		

Course Code	Title	Credit
PSLSCEBTT304	Research Methodology and Quality Control (60L)	4
Unit I : Research Method	lology (15L)	
Meaning of Resear	ch;	
• Objectives of resea	rch, motivation in research;	
• Types of research -	- Descriptive, Analytical, Applied, Fundamental,	
• Quantitative, Qualitative, Conceptual, Empirical and Other Types of		
• Research;		
Research Approach	nes; Research Methods vs. Methodology;	
Research and Scier	ntific Method;	
• Research Process:	Steps of research process; Criteria of Good Research;	
• Sampling, Sample	size determination, Plan for data collection,	
• Methods of data co	llection, Plan for data processing and analysis;	
• Ethical consideration	ons during research	

Unit II : Scientific writing (15L)	
• Meaning of Scientific and non scientific writings; Structures of Research	
proposals, Synopsis, Dissertations, Thesis, Research paper writings	
(Abstract, Introduction, Review literature, methodology, Results,	
Discussions, Summary, Conclusion, Bibliography etc);	
• Presentations: Graphical, Tabular, Animation, Power point etc	
Unit III: ISO (15L)	
• Introduction: Over View of standards in ISO9000 Family	
• Key principles: Key principles of ISO 9000- Quality Management System	
• ISO 9001: Detailed study on ISO 9001:2015 standard, based on a seven	
principles of quality management, including a strong customer focus, the	
motivation and implication of top management, the process approach and	
continual improvement	
<u>Application:</u> Sector specific Application of ISO 9001- Quality	
Management System adapted by various industries	
Unit IV: GMP/ GLP (15L)	
• Introduction: Good Manufacturing Practices (GMO) and Good Laboratory	
Practices (GLP) in Pharmaceutical Industries.	
• Overview of GMPs is enforcement by the U.S. Food Drug Administration	
(US FDA) under Title 21 CFR	
• Documentation requirement for GMP and GLP	
• Case studies for Documentation related to SOP preparation and CAPA	
(Corrective action Preventive Action).	

PSLSCEBTP304	Dissertation in Literature Review (60L)	2	04
	1. Project dissertation of literature review		

Semester IV Detail Syllabus

Course Code	Title	Credit
PSLSCENBT401	Applied environmental biotechnology (60L)	4
Unit I: Fermentation tecl	hnology I (15L)	
• Basic principles	in bioprocess technology; Media Formulation;	
Sterilization; Ther	Sterilization; Thermal death kinetics; Primary and secondary metabolites;	
Extracellular en	zymes; Biotechnologically important intracellular	
products; exopolyr	ners	
Strain improvement	nt: Methods of strain improvement in fermentation. Use	
of molecular bio	logy for development of strain to be utilized for	
fermentation exam	ples with respect to environmental biotechnology	
Bioprocess control	ol and monitoring variables such as temperature,	
agitation, pressure	e, pH Microbial processes-production, optimization,	
screening, strain in	mprovement, factors affecting down stream processing	
and recovery; R	epresentative examples of ethanol, organic acids,	
antibiotics etc.		
Unit II: Fermentation Te	echnology II (15L)	
• Types of bioreacto	r, design of bioreactor.	
• Types of fermentat	tion: Batch, Continuous and Fed-batch system.	
Comparison of bat	ch and continuous culture.	
• Monod kinetics.		
• Fed-batch culture -	- types and applications	
• Enzyme Technolo	gy-production, recovery, stability and formulation of	
bacterial and fungal enzymes-amylase, protease, penicillin acylase, glucose		
isomerase; In	mobilised Enzyme and Cell based	
biotransformationssteroids, antibiotics, alkaloids, enzyme/cell electrodes		
Unit III : Environmental monitoring (15L)		
• Definition and environmental monitoring process;		
Sampling – land (s	ite) sampling, water sampling, air sampling,	

- Analysis physical, chemical and biological analysis methods and process
- Monitoring pollution- Bioindicators, Biomarkers.
- Toxicity testing using biological material
- Biosensors mechanism, principle and working
- Environment Impact Assessment: EIA complete process, Importance of EIA
- Principles of environmental mitigation and monitoring.
- Principles of Remote sensing, its applications in Environmental Monitoring
- Geographical Information System (GIS) Concept of GIS; Types of Geographical Data. Importance of Geographical Information System in environmental studies.

Unit IV : Agricultural biotechnology (15L)

- Application of biotechnology in agriculture Detection and diagnostics, Micropropagation;
- Somatic cell genetics production of callus and suspension cultures, production of protoplasts, somaclonal variation, protoplast fusion, haploid production
- Transgenic plants: Production of transgenic plants complete process, vectors used, transformation methods used; Types of GM Plants and Products obtained from GM Plants, Biopharming, Safety of transgenic crops
- Transgenic animals: Production process, disease control, germplasm and biodiversity.
- Biofertilisers, biopesticides, bioinsecticides and bioherbicides.

PSLSCEBTP401	Environmental Monitoring	2	04
	1. Estimation of total solids		
	2. Estimation of volatile solids		
	3. Estimation of cellulose		
	4. Estimation of starch		
	5. Estimation of organic carbon – Walkely and Black's		
	method		
	6. Estimation of phosphate		
	7. Carry out fermentation using Saccharomyces spp. to		
	produce ethanol		
	8. Case study on EIA		

Course Code	Title	Credi
Course Coue	The	t
PSLSCEBTT402	Waste management (60L)	4
Unit I: Industrial and m	unicipal wastes (15L)	
• Waste classificati	on and characterisation, Waste material suitable for	
Biological treatme	nt,	
Wastewater Treatr	nent, BOD Removal, Types of Biological Processes,	
• Activated Sludge Process, Sludge, Tapered Aeration, Step Feed Aeration,		
Contact Stabilization, Complete Mix, Extended Aeration, Oxidation Ditch,		
Anaerobic Digestion		
• Sludges, Desulf	urization, Nitrification/ Denitrification, Nitrification,	
Suspended Growth Systems, Attached Growth Systems, Aquatics		
Unit II: Liquid waste ma	nagement (15L)	

- Waste-treatment system, Sewage-treatment methods;
- Design of bioreactors for liquid waste management activated sludge process, trickling filters, rotating biological contactors, anaerobic treatment of waste water;
- Modification of existing processes, removal of nitrogen and phosphorus, sludge removal and disposal, agricultural waste treatment.

Unit III : Solid waste management organisms (15L)

- Solid waste management Introduction, Treatment processes for solid wastes, thermal conversion process, biological conversion process,
- Landfill and landfill bioreactor for solid waste treatment
- Biological Control Methods: Land Treatment, Composting, Liquids/Solids Treatment Systems (LSTS), Soil Biofilters, Trickling Over Process, Stabilization,

Unit : IV Biological Degradation Of Hazardous Wastes (15L)

- Introduction; Abiotic Treatment Techniques: Wastewater Treatment, Liquids-Solids Separation, Chemical Treatment, Physical Methods, Incineration, Wet Air Oxidation, Solidification Techniques,
- Degradability: Basis for Biodegradation, Genetics, Testing for Recalcitrance, Aerobic Tiered Testing, Anaerobic Tiered Testing; Testing for Recalcitrance;
- Biochemical pathways of hazardous waste remediation: PCB Biodegradation, Landfill Leachate; TCE Degradation, Any Example of biodegradation (Aromatic Hydrocarbon, Chlorinated Wastes, p-Nitrophenol Degradation, Dioxin, Selenium)

PSLSCEBTP402	Waste management (60L)	2	04
	1. Waste water analysis - pH, COD, BOD, Hardness,		
	halides, Total solids, alkalinity and chloride.		
	2. Assessment of point of use water purifiers for		
	removal of bacteria and the Bacteriological		
	examination of Water.		
	3. Detection and isolation of industrially important		
	microorganisms – lipase producers, oil degraders,		
	antibiotic producers.		
	4. ETP: Primary, chemical and biological treatment.		
	5. Microbial degradation of textile/dyes/pesticides		
	Hydrocarbon and oils.		
	6. Case study – biotransformation		
	7. Case study – bioremediation		
	8. Case study – phytoremediation		

Course Code	Title	Credit
PSLSCEBTT403	Industrial Environmental biotechnology (60L)	4
Unit I: Sustainable techn	nology (15L)	
• Introduction; Prov	ision of bulk and fine chemicals – plants as a source,	
microbial producti	ion of chemicals, their production process (any example:	
acetic acid, citric a	acid, ethanol, glycerol, isopropanol, lactic acid,	
acrylamide)		
Microbial polymer	rs and plastics – process, production and organisms	
involved;		
• Industrial process	and clean technology: extraction and supply of raw	
materials; process	ing of raw material (eg. Enzymes, extremophiles), use and	

disposal of product.

Unit II: Biofuels (15L)

- Finite supply of fossil fuels, emissions from fossil fuels, Greenhouse gases
 CO2, Ozone, Sulphur dioxide, their interactions with environment;
 remediation of the emissions from fossil fuels
- Alternative energy sources; Biological energy sources, Bio-diesel from microbial sources. Microbial fuel cells.
- Biofuels generations of biofuels; Combustion of biomass, Biogas, Biodiesel, Ethanol, hydrogen
- Biofuels from waste: Methods and processes for utilization of waste for production of fuels, economical and social aspects of waste treatment, Community biogas plant, biogas scheme – scope of rural development,

Unit : III Natural resource recovery (15L)

- Introduction to natural resource recovery
- Oil recovery: Introduction, Enhanced oil recovery (EOR),
- Microbially enhanced oil recovery (MEOR), Microbial biopolymers used in recovery
- Recovery of metals: Bioleaching direct and indirect, bioleaching microorganisms, recovery of metals from mining waste; Extraction of – Copper, uranium, gold, etc; Recent developments in natural resource recovery

Unit : IV Biotechnology of marine environment (15L)	
• Introduction, Extreme environmental conditions, Marine life forms, Role of	
microorganisms in ocean processes; Biomimetic materials	
• Compounds obtained from marine environment – industrial products and	
processes, sea and land based cultivation of these pharmaceutical products,	
Molecular biology products eg. Thermus aquaticus, Polymers – eg	
Polysaccharides, emulsans, polyhydroxyalkanoates, adhesives and melanins	
• Microalgae – products obtained from microalgae;	
Marine Genomics and Proteomics.	

DSI SCEDTD402	Indus 1.	trial environmental biotechnology Field visit to waste water treatment plants.	2	04
PSLSCEB1P403	2.	Estimation of heavy metals in various samples by		
		AAS		
	3.	Estimation of Co2+ and Ni2+ by colorimetry/		
		spectrophotometry.		
	4.	Chlorophyll estimation from seaweeds.		
	5.	Case Study: Sustainable development		
	6.	Determine the particulate matter in atmosphere.		
	7.	Cytotoxicity assay (onion root tip/pollen		
		germination) to estimate water contamination.		
	8.	Case Study: Biogas plant		

Course Code	Title	Credit
PSLSCEBTT404	Genetic engineering and Food Technology (60L)	4
Unit I: Microbial Cell Fac	ctories and their modification (15L)	
• Strain Improve	ment: Physical, Chemical and Biological Methods	
(Site-directed M	lutagenesis Methods, Molecular Evolution/Random	
mutagenesis, de na	ovo Sequence design, Expression- Display technologies, ,	
Analysis and detection, applications.		
• Technologies: Gen	nome editing, RNAi technologies, Metabolic Engineering	
and modelling,	Systems Biology and Synthetic Biology for strain	
improvement.		
• Model Express	ion Systems: Prokaryotic: <i>E. coli</i> : Expression	
systems,Expressio	n of Foreign Genes in Bacteria – Problems, optimization	
of expression:	host, transcriptional, translational, post translational	
compatibility, so	lubility and purification, transport and localization,	
Modification of	gene - codon optimization, host strain modification	
Expression of Nati	ive Proteins, , Detecting Expression of Foreign Genes	
Lower eukaryote	s: Yeasts: Yeast Selectable Markers and Vector Systems,	
commercially use	ed yeast strains (S. cerevisiaeand Pichia) and their	
expressionsystems		
Heterologous Prot	tein Production - Design parameters: Source of DNA,	
Heterologous mR	Heterologous mRNA and protein levels and downstream applications,	
humanization of ye	east for post translational compatibility.	
Unit II: Applications of	Genetic Engineering (15L)	
• Applications- n	nodifying activity, substrate specificity, cofactor	
requirement, incre	asing stability, pH and temperature optima, Construction	
of deregulated mutants resistant to feed back inhibition and repression.		
• Uses of Indus	strial Enzymes: Food and Feed biotechnology:	
Nutraceuticals, Biopreservation, Biotransformations and other industries.		
• Uses in Medie	cal Research: Analysis of Genes, Genomes and	

Protein-Protein Interactions - YACTechnology, Constructing Gene	
Knockouts and Novel Reporter Systems, synthesis of commercially	
compounds. Therapeutic proteins, vaccines and alternate therapies.	
Unit III: Food Constituents and Nutrition(15 L)	
• Food constituents, sources and function: Carbohydrate, lipids, proteins, vitamins, minerals and water; RDA and ICMR recommendations for calorie requirement of food for men, women and children; Food spoilage (chemical, biochemical and microbial); Methods of food preservation (dehydration, chemical, freezing, canning); Food additives – classes and safety; Food poisoning – chemical and microbial	
Unit IV: Food Technology (15 L)	
 Cereals and pulses; Milling process, Nutritive loss; Indian cereal produ Bakery and Pasta products; Types of Milk and milk products; Fruits – products and confectionaries; Food beverages; Food analysis and nutritional label Food processing – history, objectives and quality control ; Food packagin types and functions; Health foods - Functional foods, Prebiotics, Probiot Neutraceuticals, organic foods, GM foods 	cts; acts ing; g – ics,

PSLSCEBTP304	Dissertation of Research Project (60L)	2	04
	1. Project studies: presentation and preparation of report		
	of observations and results		

References :

PSLSCEBTT301

- Kothari, C.R., 1985, Research Methodology- Methods and Techniques, New Delhi, Wiley Eastern Limited.
- Das, S.K., 1986, an Introduction to Research, Kolkata, Mukherjee and Company Pvt. Ltd.
- Misra R.P., 1989, Research Methodology: A Handbook, New Delhi, Concept Publishing Company
- Kumar, R., 2005, Research Methodology-A Step-by-Step Guide for for Beginners, (2nd.ed.), Singapore, Pearson Education.
- 5. Bhattachraya, D.K., 2006, Research Methodology, (2nd.ed.), New Delhi, Excel Books.
- 6. Panneerselvam R., 2012, Research Methodology, New Delhi, PHI Learning Pvt. Ltd.
- 7. Wetland ecology: principles and conservation by Paul A.Keddy
- 8. Encyclopedia of natural resources: Yeqiao wang.

PSLSCEBTT 302

- 1. A textbook of environmental pollution and control. S S. Dara
- 2. Environmental pollution control engineering. C. S. Rao. New Age International Publishers.
- 3. APHA 1998. Standard Methods for the examination of water and wastewater, 20th Ed
- 4. Environment and ecology by S.N.Pandey and S.P Mishra
- 5. Biotechnology of Odour nd Air pollution.Springer
- 6. Soil analysis Volume 2 Handbook of methods in environmental studies.s.K.Mai

PSLSCEBTT 303

- R. M. Atlas and R. Bartha 1998 Microbial Ecology Fundamentals and applications. AddisonWesley Longman, Inc.
- 2. R.MMaier, I.L.Pepper and C.P.Gerba 2010, Environmental Microbiology Academic Press
- Rastogi & Sani, Microbes and Microbial Technology, 2011, pp 29-57, Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment.

- 4. Brock Biology of microorganisms12th edition
- 5. Environmental law:Stuart bell
- 6. An Introduction to environmental toxicology: Michael H.Dong

PSLSCEBTT304

- The Oxford Book of Modern Science Writing (Oxford Landmark Science) 2009 by <u>Richard Dawkins</u> (Author, Editor)
- Writing Science: How to Write Papers That Get Cited and Proposals That Get Funded (2012) by <u>Joshua Schimel</u> (Author)
- The Best of the Best of American Science Writing (The Best American Science Writing) 2010 by <u>Jesse Cohen</u> (Author)
- From Research to Manuscript A Guide to Scientific Writing (Second Edition) By Katz, Michael J. (Springer Publication)
- Science Research Writing for Non-Native Speakers of English by <u>Hilary Glasman-Deal</u> (Author), Imperial College Press, London, UK
- Scientific Writing and Communication by <u>Angellka Hofmann</u>, Oxford University Press (2014)
- 7. ISO 9000 quality systems handbook fourth edition by David Hoyle
- International standard iso9001 : quality management systems requirements fifth edition 2015-09-15.
- Pharmaceutical quality assurance for students of pharmacy, @nd edition Dec.2007.by Mr. manohar a. Potdar. NiraliPrakashan.
- 10. How to Practice GMPs 7th ed. by P.P. Sharma ,Seventh edition 2015.
- 11. Hand Book, Good Laboratory Practices: Quality practices for regulated non-clinical research and development, 2nd Edition, 2009.

PSLSCEBTT 401

- Environmental biotechnology: Theory and applications by Gareth Evans and Judith Furlong.
- 2. Industrial microbiology by Casida.
- 3. Environmental biotechnology: Alan Scragg
- 4. Environmental sciences: Odum

- 5. Environmental biotechnology: Bimal Bhattacharya and Ritu Banerjee.
- Plant tissue culture: An introductory test by Sant Saran Bhojwani and PRem kumar Dantu
- 7. Remote Sensing and GIS: Basudev Bhatta

PSLSCEBTT402

- Wastewater engineering: Treatment and reuse. Metcalf and Eddy, Tata McGraw Hill Publishing Co. Ltd. 4th Ed.
- **2.** Environmental pollution control engineering. C. S. Rao. New Age International Publishers.
- 3. APHA 1998. Standard Methods for the examination of water and wastewater, 20th Ed.
- **4.** Water and Wastewater analysis Volume 1. Handbook of methods in environmental studies. S. K. Maiti. ABD Publishers 2004
- 5. Environmental biotechnology: Bimal Bhattacharya and Ritu Banerjee
- 6. Solid Waste Management CPCB. New Delhi.
- 7. Ecotechnology for pollution control & environmental management By R.K. Trivedi & Arvind Kr.
 - 8. Basic Environmental Technology J.A. Nathanson

PSLSCEBTT 403

- 1. Environmental biotechnology: Alan Scragg
- 2. Environmental sciences: Odum
- 3. Industrial microbiology: G.REED

PSLSCEBTT 404

- 1. Molecular Biology and Biotechnology,5th and 4th edition by J. M. Walker and R. Rapley
- 2. Biotechnology, Concepts and Applications by R. R. Vittal and R. Bhat
- 3. Biotechnology, Principles and Applications by S. C. Rastogi
- 4. More Gene Manipulations in Fungi by J. W. Bennette and Linda L. Lasure
- 5. Microbial Metabolism and biotechnology, e-book by Horst Doelle
- 6. The Metabolic Pathway Engineering Handbook- Fundamenals Christina D Somlke

- 7. Systems Biotechnology for strain improvement. Trends in Biotechnology. Volume 3 (7),2006.
- 8. Sumati R Mudambi , Rajagopal M V. Fundamentals of Food and Nutrition. New Age International Publishers
- 9. 2. Potter NN, Hotchkiss JH. Food Science. CBS publishers and distributers
- 10. 3. S. Manany, N S. Swamy Food Facts and Principles. New Age International Publishers
- 11. 4. Pomrenz Y& Meloan CE 1996 Food Analysis Theory and Practice CBS
- 12. 5. Jay JM, Loessner MJ & Golden D A 2005. Modern Food Microbiology .Springer Verlag