UNIVERSITY OF MUMBAI

Syllabus for the S.Y.B.A. Program: B.A. Course :STATISTICS

(Choice Based Credit Grading Semester System with effect from the academic year 2017–2018)

S.Y.B.A. STATISTICS Syllabus

for Choice Based Credit Grading Semester System

To be implemented from the Academic year 2017-2018

Student must have passed 12th standard with mathematics. If not then he/she has to complete the required bridge course.

SEMESTER III

Course Code	UNIT	TOPICS	Credits	L / Week
	Ι	Elementary Probability Theory:		1
UAST 301	II	Concept of Discrete random variable and properties of its probability distribution	2	1
	III	Some Standard Discrete Distributions		1
UAST 302	Ι	Linear Programming Problem (L.P.P.)		1
	II	Transportation Problem	2	1
	III	Assignment Problem and Sequencing	-	1
UASTP3	Practicals based on both courses in theory		2	6
UASTP3				6
UASTP3(A)	Practicals based on UAST301		1	3
UASTP3(B)	Practicals based on UAST302		1	3

SEMESTER IV

Course Code	UNIT	TOPICS	Credits	L / Week
	Ι	Continuous random variable		1
UAST 401	II	Some Standard Continuous Distributions	2	1
	III	Elementary topics on Estimation and Testing of hypothesis		1
	Ι	CPM and PERT		1
UAST 402	II	Game Theory	2	1
	III	Decision Theory		1
UASTP4	Practicals based on both courses in theory		2	6
UASTP4				6
UASTP4(A)	Practicals based on UAST401		1	3
UASTP4(B)	Practicals based on UAST402		1	3

SEMESTER III

Course Code	Title	Credits
UAST 301	STATISTICAL METHODS-1	2 Credits (45 lectures)
Unit I: <u>Elemen</u>	tary Probability Theory:	
Definition of an Classical (Mathe Axiomatic defin Theorems on Ac Independence of probability, Bay	Apperiment, sample point and sample space. event. Operation of events, mutually exclusive and exhaustive events. ematical) and Empirical definitions of Probability and their properties. ition of probability. Idition and Multiplication of probabilities, pair wise.(with proof) f events and mutual independence for three-events. Conditional es' theorem (with proof) and its applications.	15 Lectures
distribution: Random variable cumulative distre Raw and Centra without proof). Concepts of Ske Expectation of a Joint probability Marginal and co	e. Definition and properties of probability distribution and ibution function of discrete random variable. I moments (definition only) and their relationship. (upto order four ewness and Kurtosis and their uses. a random variable. Theorems on Expectation and Variance. (with proof) wass function of two discrete random variables. onditional distributions. Coefficient of Correlation. Independence of two random variables.	15 Lectures
Discrete Uniform variance. Recurrence relat applications (wi Poisson approxi Hyper geometric	Standard Discrete Distributions: m, Binomial and Poisson distributions and derivation of their mean and tion for probabilities of Binomial and Poisson distributions and its th derivations). mation to Binomial distribution (Statement only). c distribution, Derivation of its mean and variance. simation to hyper geometric distribution (statement only)	15 Lectures

REFERENCES.

1. Medhi J. : Statistical Methods, An Introductory Text, Second Edition,

New Age International Ltd.

2 Agarwal B.L. : Basic Statistics, New Age International Ltd.

3. Spiegel M.R. : Theory and Problems of Statistics, Schaum' s Publications series.

Tata McGraw-Hill.

- 4. David S. : Elementary Probability, Cambridge University Press.
- 5. Hoel P.G. : Introduction to Mathematical Statistics, Asia Publishing House.
- 6. Hogg R.V. and Tannis E.P. : Probability and Statistical Inference.
- McMillan Publishing Co. Inc.
- 7. PitanJim : Probability, Narosa Publishing House.
- 8. Goon A.M., Gupta M.K., Dasgupta B. : Fundamentals of Statistics, Volume II :

The World Press Private Limited, Calcutta.

Course Code	Title	Credits
UAST 302	OPERATIONS RESEARCH AND INDUSTRIAL STATISTICS-1	2 Credits (45 lectures)
Definition, Math Solution, Feasib & Artificial vari Standard form, G Graphical Metho		15 Lectures
Big M method. Concept of Dual	ity & its economic interpretation.	
Definition, Math solution, Optima Initial Basic Fea (i) North-West O (iii)Vogel's App MODI Method Problems involv	bortation Problem nematical Formulation Concepts of Feasible solution, Basic feasible al and multiple solutions. sible Solution using Corner rule.(ii) Matrix Minima Method. roximation Method. for optimality. ing unique solution, multiple solutions, degeneracy, maximization, (s) and production costs. Unbalanced Transportation problem.	15 Lectures
Definition, Math Unbalanced Ass Problems involv Travelling saless <u>Sequencing :</u>	nment Problem and sequencing nematical formulation. Solution by Hungarian Method. ignment problems. ing Maximization & prohibited assignments man problem os through 2 and 3 Machines and 2 jobs through m Machines.	15 Lectures

REFERENCES

- 1. Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.
- 2. Schaum Series book in O.R. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.
- 3. Operations Research: Methods and Problems: Maurice Sasieni, Arthur Yaspan and Lawrence Friedman,(1959), John Wiley & Sons.
- 4. Mathematical Models in Operations Research : J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.
- 5. Principles of Operations Research with Applications to Management Decisions: Harvey M. Wagner, 2nd Edition, Prentice Hall of India Ltd.
- 6. Operations Research: S.D.Sharma.11th edition, KedarNath Ram Nath& Company.
- 7. Operations Research: H. A.Taha.6th edition, Prentice Hall of India.
- 8. Quantitative Techniques For Managerial Decisions: J.K.Sharma, (2001), MacMillan India Ltd.

DISTRIBUTION OF TOPICS FOR PRACTICALS

SEMESTER-III

Sr. No	Semester III .Course		
	UASTP3(A)		
1	Probability.		
2	Discrete Random Variable		
3	Bivariate Probability		
5	Distributions		
4	Binomial distribution		
5	Poisson distribution		
6	Hyper geometric distribution		

COURSE	CODE UA	ASTP3	

Sr. No	Semester III .Course UASTP3(B)
1	Formulation and Graphical Method
2	Simplex Method
3	Transportation
4	Assignment
5	Sequencing

SEMESTER IV

Course Code	Title	Credits
UAST 401	STATISTICAL METHODS-2	2 Credits (45 lectures)
Concept of Con Probability dens Their graphical Expectation and	variance of a random variable and its properties (with proof). ation, dispersion, skewness and kurtosis. Raw and central moments	15 Lectures
Uniform, Expon Exponential dist Cumulative dist Uniform and Ex proof).	Standard Continuous Distributions : ential (location scale parameter), memory less property of ribution (without proof) ribution function, derivations of mean, median and variance for ponential distributions. Properties of Normal distribution (without mation to Binomial and Poisson distribution (statement only). ables.	15 Lectures
Sample from a c Concept of a sta Unbiasedness: C Central Limit th Sampling distrib Standard errors Point estimate a large size. Statistical tests Concept of hypo Null and alterna Large sample te For testing spec: For testing spec: For testing spec:	tistic, estimate, sampling distribution, Parameter and its estimator. Concept of bias and standard error of an estimator. eorem (with proof). bution of sample mean and sample proportion. (For large sample only) of sample mean and sample proportion. and interval estimate of single mean, single proportion from sample of thesis te hypothesis, Types of errors, Critical region, Level of significance. sts (using central limit theorem, if necessary) ified value of population mean ified value in difference of two means ified value of population proportion ified value of difference of population proportion f critical region is not expected.)	15 Lectures

REFERENCES:

- 1. Introduction to the theory of statistics: A M Mood, F.A. Graybill, D C Boyes; Third Edition; McGraw-Hill Book Company.
- 2. Introduction to Mathematical Statistics: R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers.
- 3. Probability and Statistical Inference: R.V.Hogg, E. A.Tannis, Third Edition; Collier McMillan Publishers.
- 4. John E. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.
- 5. Introduction to Mathematical Statistics: P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.
- 6. Fundamentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.
- 7. Mathematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.
- 8. Statistical Methods- An Introductory Text: J. Medhi; Second edition; Wiley Eastern Ltd.
- 9. An Outline of Statistical Theory Vol. 1: A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.

Course Code	Title	Credits
UAST 402	OPERATIONS RESEARCH AND INDUSTRIAL STATISTICS-2	2 Credits (45 lectures)
Unit I : <u>CPM</u> Concept of pro	and PERT ject as an organized effort with time management.	
	Outline of the techniques.	
Diagrammatic	representation of activities in a project	
	d Network Diagram.	15 Lectures
	Float times. Determination of Critical path.	
-	sideration in project scheduling.	
Project cost an		
Unit II : <u>GAME THEORY</u> Definitions of Two persons Zero Sum Game, Saddle Point, Value of the Game, Pure and Mixed strategy, Optimal solution of two person zero sum games. Dominance property, Derivation of formulae for (2x2) game. Graphical solution of (2xn) and (mx2) games. Reduction of game theory to LPP		15 Lectures
Unit III : DECISION THEORY Decision making under uncertainty: Laplace criterion, Maximax (Minimin) criterion, Maximin (Minimax) criterion, Hurwitz α criterion, Minimax Regret criterion. Decision making under risk: Expected Monetary Value criterion, Expected Opportunity Loss criterion, EPPI, EVPI. Bayesian Decision rule for Posterior analysis. Decision tree analysis along with Posterior probabilities.		15 Lectures

REFERENCES

- 1. Schaum Series book in O.R. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.
- 2. Operations Research: Methods and Problems: Maurice Sasieni, Arthur Yaspan and Lawrence Friedman,(1959), John Wiley & Sons.
- 3. Mathematical Models in Operations Research : J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.
- 4. Principles of Operations Research with Applications to Management Decisions: Harvey M. Wagner, 2nd Edition, Prentice Hall of India Ltd.
- 5. Operations Research: S.D.Sharma.11th edition, KedarNath Ram Nath& Company.
- 6. Operations Research: H. A.Taha.6th edition, Prentice Hall of India.
- 7. PERT and CPM, Principles and Applications: Srinath. 2nd edition, East-west press Pvt. Ltd.
- 10 Kantiswarup, P.K. Gupta, Manmohan : Operations Research, Twelth edition, Sultan Chand & sons
- 11 Bronson R. : Theory and problems of Operations research, First edition, Schaum's Outline series
- 12 Vora N. D. : Quantitative Techniques in Management, Third edition, McGraw Hill Companies.
- 13 Bannerjee B. : Operation Research Techniques for Management, First edition, Business Books

DISTRIBUTION OF TOPICS FOR PRACTICALS

Sr. No	Semester IV Course	Sr. No	Semester IV Course UASTP4(B)
	UASTP4(A)		
1	Continuous Random Variables	1	CPM- Drawing Network
2	Uniform, Exponential and	2	CPM- Determination of Critical Path and
	Normal Distributions		related problems
	Applications of central limit		PERT
3	theorem and normal	3	
	approximation		
4	Testing of Hypothesis	4	Game Therory 1
5	Large Sample Tests	5	Game theory 2
		6	Decision Theory-1: Decisions Under
		6	Uncertainty
		7	Decision Theory-2 : Decisions Under
		7	Risk
		0	Decision Theory-3 : Decision Tree
		8	analysis.

SEMESTER-IV COURSE CODE UASTP4

Assessment of Practical Core Courses Per Semester per course

1.	Semester work, Documentation, Journal	 10 Marks.
2.	Semester End Practical Examination	 40 Marks

Semester End Examination

<u>Theory</u>: At the end of the semester, Theory examination of three hours duration and 100 marks based on the three units shall be held for each course.

Pattern of **Theory question** paper at the end of the semester for <u>each course</u> :

There shall be Five Questions of twenty marks each. Question 1 based on all Three units. Ten sub-questions of two marks each. Question 2 based on Unit I (Attempt any TWO out of THREE) Question 3 based on Unit II (Attempt any TWO out of THREE) Question 4 based on Unit III (Attempt any TWO out of THREE) Question 5 based on all Three Units combined. (Attempt any TWO out of THREE)

<u>Practicals</u>: At the end of the semester, Practical examination of **2** hours duration and 40 marks shall be held for **each course**.

Marks for term work in each paper should be given out of 10.(5 for viva and 5 for journal)

Pattern of **Practical question** paper at the end of the semester for <u>each course</u> :

There shall be Four Questions of ten marks each. Students should attempt all questions. Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III, Question 4 based on all Three Units combined.

Students should attempt <u>any two</u> sub questions out of the **three** in each Question.

<u>Workload</u>

Theory : 3 lectures per week per course.

Practicals: 3 lecture periods per course per week per batch. All three lecture periods of the practicals shall be conducted in succession together on a single day
