3

3

3

3

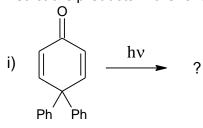
3

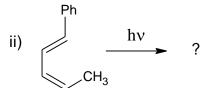
5

4

[Time: Three Hours] [Marks:75]

Please check whether you have got the right question paper.


- N. B: 1. All questions are compulsory.
 - 2. Answers to the same question must be written together.
 - 3. Figures to the right indicate full marks.
- Q. 1 Attempt any **five** of the following:
 - (a) Give an account of E_T -solvatochromism scale.
 - (b) What are photochemical reaction quenchers? Discuss the principle involved in photo-quenching process.
 - (c) Explain I-strain concept with suitable examples. 3
 - (d) Nor-bornylene on treatment with ${\rm KMnO_4}$ gives exo-norbornadiol. Justify the same.
 - (e) Give two methods of generation of benzyne. How does benzyne react with anthracene? Give the reaction.
 - (f) How is carbene generated from diazomethane? Discuss the cycloaddition and insertion reaction of carbenes with one example each.
 - (g) Give synthesis of L-DOPA by Knowles's Monsanto process.
 - (h) How asymmetric α-amino acid is synthesised using cyclic hydrazone intermediate?
- Q. 2 (a) Discuss the cleavage of the bond β to the carboxyl group in photochemical 6 reactions of ketone.


Or

- (a) What are specific acid and specific base catalysis reactions? Derive the rate 6 expression for the same.
- (b) Discuss the following:
 - i. Bell-Evans-Polanyi principle
 - ii. Secondary kinetic isotope effect
- (c) With suitable examples, explain how cross-over experiments help in establishing 4 the mechanism of a reaction.

Or

(c) Predict the products in the following reactions and give their mechanism:

6

5

4

4

6

6

4

4

6

Q. 3 (a) Discuss the structural and symmetry features of cis and trans decalins. Compare 6 the stability with reference to their enthalpies.

Or

- (a) Account for the following observations:
 - Trans-cyclodecene on bromination gives trans-1,6-dibromocyclodecane.
 - ii) Menthyl chloride undergoes dehydrohalogenation on treatment with base at a sluggish rate and gives 2-menthene as the major product.
 - iii) Cyclohexanone undergoes reduction reaction with $LiAlH_4$ at a faster rate compared to cyclopentanone.
- (b) Illustrate the phenomenon of circular birefringence and circular dichroism.
- (c) Give an account of Bredt's rule.

Or

- (c) Discuss the use of chiral stationary phase in determination of enantiomeric composition by chromatographic method.
- Q. 4 (a) Complete the following reactions and identify the reactive species generated:-

i)
$$CH_2NH_2$$
 HNO_2 ?

ii)
$$\longrightarrow$$
 CONH₂ \longrightarrow NaOH ?

iii) CHCl₃ + KOH
$$\frac{\text{cis-but-2-ene}}{}$$
 ?

Or

- (a) Give an account of applications of BINAPs as part of chiral catalyst for asymmetric transformations.
- (b) What are salient features of Sharpless epoxidation? Explain how it can be used for kinetic resolutions of racemic allylic alcohols.
- (c) Give an account of enantioselective dihydroxylations of alkenes using OsO₄.

Or

- (c) Explain with suitable example how asymmetric Diels-Alder reaction can be effectively achieved by using chiral dienophile.
- Q. 5 (a) Complete the following reactions:-

i)
$$S \leftarrow CH_3 \longrightarrow P$$
?

ii)
$$H_3C$$

$$CH_3 \longrightarrow ?$$

iii)
$$\stackrel{\text{MeO}}{\longleftarrow} \stackrel{\text{CH}_2}{\longleftarrow} \stackrel{\text{CH}_2}{\longleftarrow} \stackrel{\Delta}{\longrightarrow} ?$$

Page 2 of 3

Q.P. Code: 22256

	Or	
(a)	Discuss the bonding in ferrocene and also discuss the physical and chemical properties of ferrocene.	6
(b)	Give the mechanism and explain the stereochemistry of Claisen rearrangement reaction with suitable example.	5
(c)	Give an account of sigmatropic rearrangement.	4
	Or	
(c)	Interpret Frost-Musulin geometrical structure with reference to $(4n+2)\pi$ electron rule applying to benzene.	4